Revisiting Bistability in the Lysis/Lysogeny Circuit of Bacteriophage Lambda
نویسندگان
چکیده
The lysis/lysogeny switch of bacteriophage lambda serves as a paradigm for binary cell fate decision, long-term maintenance of cellular state and stimulus-triggered switching between states. In the literature, the system is often referred to as "bistable." However, it remains unclear whether this term provides an accurate description or is instead a misnomer. Here we address this question directly. We first quantify transcriptional regulation governing lysogenic maintenance using a single-cell fluorescence reporter. We then use the single-cell data to derive a stochastic theoretical model for the underlying regulatory network. We use the model to predict the steady states of the system and then validate these predictions experimentally. Specifically, a regime of bistability, and the resulting hysteretic behavior, are observed. Beyond the steady states, the theoretical model successfully predicts the kinetics of switching from lysogeny to lysis. Our results show how the physics-inspired concept of bistability can be reliably used to describe cellular phenotype, and how an experimentally-calibrated theoretical model can have accurate predictive power for cell-state switching.
منابع مشابه
Probability landscape of heritable and robust epigenetic state of lysogeny in phage lambda.
Computational studies of biological networks can help to identify components and wirings responsible for observed phenotypes. However, studying stochastic networks controlling many biological processes is challenging. Similar to Schrödinger's equation in quantum mechanics, the chemical master equation (CME) provides a basic framework for understanding stochastic networks. However, except for si...
متن کاملDetermination of cell fate selection during phage lambda infection.
Bacteriophage lambda infection of Escherichia coli can result in distinct cell fate outcomes. For example, some cells lyse whereas others survive as lysogens. A quantitative biophysical model of lambda infection supports the hypothesis that spontaneous differences in the timing of individual molecular events during lambda infection leads to variation in the selection of cell fates. Building fro...
متن کاملLysis‐lysogeny coexistence: prophage integration during lytic development
The infection of Escherichia coli cells by bacteriophage lambda results in bifurcated means of propagation, where the phage decides between the lytic and lysogenic pathways. Although traditionally thought to be mutually exclusive, increasing evidence suggests that this lysis-lysogeny decision is more complex than once believed, but exploring its intricacies requires an improved resolution of st...
متن کاملGenetic screen for monitoring hepatitis C virus NS3 serine protease activity.
We have developed a genetic system to monitor the activity of the hepatitis C virus (HCV) NS3 serine protease. This genetic system is based on the bacteriophage lambda regulatory circuit where the viral repressor cI is specifically cleaved to initiate the switch from lysogeny to lytic infection. An HCV protease-specific target, NS5A-5B, was inserted into the lambda phage cI repressor. The targe...
متن کاملCooperativity leads to temporally-correlated fluctuations in the bacteriophage lambda genetic switch
Cooperative interactions are widespread in biochemical networks, providing the nonlinear response that underlies behavior such as ultrasensitivity and robust switching. We introduce a temporal correlation function-the conditional activity-to study the behavior of these phenomena. Applying it to the bistable genetic switch in bacteriophage lambda, we find that cooperative binding between binding...
متن کامل